Copied to
clipboard

G = C22×SL2(𝔽5)  order 480 = 25·3·5

Direct product of C22 and SL2(𝔽5)

direct product, non-abelian, not soluble

Aliases: C22×SL2(𝔽5), C23.A5, C22.5(C2×A5), C2.7(C22×A5), SmallGroup(480,960)

Series: ChiefDerived Lower central Upper central

C1C2C22C23 — C22×SL2(𝔽5)
SL2(𝔽5) — C22×SL2(𝔽5)
SL2(𝔽5) — C22×SL2(𝔽5)
C1C23

Subgroups: 788 in 104 conjugacy classes, 21 normal (5 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C2×C4, Q8, C23, C10, Dic3, C2×C6, C22×C4, C2×Q8, Dic5, C2×C10, SL2(𝔽3), C2×Dic3, C22×C6, C22×Q8, C2×Dic5, C22×C10, C2×SL2(𝔽3), C22×Dic3, C22×Dic5, C22×SL2(𝔽3), SL2(𝔽5), C2×SL2(𝔽5), C22×SL2(𝔽5)
Quotients: C1, C2, C22, A5, SL2(𝔽5), C2×A5, C2×SL2(𝔽5), C22×A5, C22×SL2(𝔽5)

Smallest permutation representation of C22×SL2(𝔽5)
On 96 points
Generators in S96
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46)(47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86)(87 88 89 90 91 92 93 94 95 96)
(1 53 60 24 83 5 87 28 46 72)(2 48 65 19 78 6 92 33 41 67)(3 23 94 75 61 10 45 50 86 29)(4 18 89 70 66 9 40 55 81 34)(7 69 37 27 90 12 80 25 59 56)(8 74 42 32 95 11 85 20 64 51)(13 36 77 49 38 15 58 76 93 26)(14 31 82 54 43 16 63 71 88 21)(17 39)(22 44)(30 62)(35 57)(47 91)(52 96)(68 79)(73 84)

G:=sub<Sym(96)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96), (1,53,60,24,83,5,87,28,46,72)(2,48,65,19,78,6,92,33,41,67)(3,23,94,75,61,10,45,50,86,29)(4,18,89,70,66,9,40,55,81,34)(7,69,37,27,90,12,80,25,59,56)(8,74,42,32,95,11,85,20,64,51)(13,36,77,49,38,15,58,76,93,26)(14,31,82,54,43,16,63,71,88,21)(17,39)(22,44)(30,62)(35,57)(47,91)(52,96)(68,79)(73,84)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46)(47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96), (1,53,60,24,83,5,87,28,46,72)(2,48,65,19,78,6,92,33,41,67)(3,23,94,75,61,10,45,50,86,29)(4,18,89,70,66,9,40,55,81,34)(7,69,37,27,90,12,80,25,59,56)(8,74,42,32,95,11,85,20,64,51)(13,36,77,49,38,15,58,76,93,26)(14,31,82,54,43,16,63,71,88,21)(17,39)(22,44)(30,62)(35,57)(47,91)(52,96)(68,79)(73,84) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46),(47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86),(87,88,89,90,91,92,93,94,95,96)], [(1,53,60,24,83,5,87,28,46,72),(2,48,65,19,78,6,92,33,41,67),(3,23,94,75,61,10,45,50,86,29),(4,18,89,70,66,9,40,55,81,34),(7,69,37,27,90,12,80,25,59,56),(8,74,42,32,95,11,85,20,64,51),(13,36,77,49,38,15,58,76,93,26),(14,31,82,54,43,16,63,71,88,21),(17,39),(22,44),(30,62),(35,57),(47,91),(52,96),(68,79),(73,84)]])

36 conjugacy classes

class 1 2A···2G 3 4A4B4C4D5A5B6A···6G10A···10N
order12···234444556···610···10
size11···12030303030121220···2012···12

36 irreducible representations

dim11233444556
type++-+++-+++-
imageC1C2SL2(𝔽5)A5C2×A5A5SL2(𝔽5)C2×A5A5C2×A5SL2(𝔽5)
kernelC22×SL2(𝔽5)C2×SL2(𝔽5)C22C23C22C23C22C22C23C22C22
# reps13826143134

Matrix representation of C22×SL2(𝔽5) in GL4(𝔽61) generated by

1000
06000
002849
005951
,
60000
0100
001034
00408
G:=sub<GL(4,GF(61))| [1,0,0,0,0,60,0,0,0,0,28,59,0,0,49,51],[60,0,0,0,0,1,0,0,0,0,10,40,0,0,34,8] >;

C22×SL2(𝔽5) in GAP, Magma, Sage, TeX

C_2^2\times {\rm SL}_2({\mathbb F}_5)
% in TeX

G:=Group("C2^2xSL(2,5)");
// GroupNames label

G:=SmallGroup(480,960);
// by ID

G=gap.SmallGroup(480,960);
# by ID

׿
×
𝔽